Blog posts on Data Science, Machine Learning, Data Mining, Artificial Intelligence, Spark Machine Learning

Friday, December 25, 2015

Data Science with R

As R programming language becoming popular more and more among data science group, industries, researchers, companies embracing R, going forward I will be writing posts on learning Data science using R. The tutorial course will include topics on data types of R, handling data using R, probability theory, Machine Learning, Supervised – unSupervised learning, Data Visualization using R, etc. Before going further, let’s just see some stats and tidbits on data science and R.

"A data scientist is simply someone who is highly adept at studying large amounts of often unorganized/undigested data"


Wednesday, November 18, 2015

Item Based Collaborative Filtering Recommender Systems in R

In the series of implementing Recommendation engines, in my previous blog about recommendation system in R, I have explained about implementing user based collaborative filtering approach using R. In this post, I will be explaining about basic implementation of Item based collaborative filtering recommender systems in r.
Intuition:


Monday, October 19, 2015

Data Mining Standard Process across Organizations

Recently I have come across a term, CRISP-DM - a data mining standard. Though this process is not a new one but I felt every analyst should know about commonly used Industry wide process. In this post I will explain about different phases involved in creating a data mining solution.

CRISP-DM, an acronym for Cross Industry Standard Process for Data Mining, is a data mining process model that includes commonly used approaches that data analytics Organizations use to tackle business problems related to Data mining. Polls conducted at one and the same website (KDNuggests) in 2002, 2004, 2007 and 2014 show that it was the leading methodology used by industry data miners who decided to respond to the survey.

Wednesday, October 7, 2015

Introduction to Logistic Regression with R

In my previous blog I have explained about linear regression. In today’s post I will explain about logistic regression.
        Consider a scenario where we need to predict a medical condition of a patient (HBP) ,HAVE HIGH BP or NO HIGH BP, based on some observed symptoms – Age, weight, Issmoking, Systolic value, Diastolic value, RACE, etc.. In this scenario we have to build a model which takes the above mentioned symptoms as input values and HBP as response variable. Note that the response variable (HBP) is a value among a fixed set of classes, HAVE HIGH BP or NO HIGH BP.

Logistic regression – a classification problem, not a prediction problem:

In my previous blog I told that we use linear regression for scenarios which involves prediction. But there is a check; the regression analysis cannot be applied in scenarios where the response variable is not continuous. In our case the response variable is not a continuous variable but a value among a fixed set of classes. We call such scenarios as Classification problem rather than prediction problem. In such scenarios where the response variables are more of qualitative nature rather than continuous nature, we have to apply more suitable models namely logistic regression for classification.

Thursday, April 9, 2015

Exposing R-script as API

R is getting popular programming language in the area of Data Science. Integrating Rscript with web UI pages is a challenge which many application developers are facing. In this blog post I will explain how we can expose R script as an API, using rApache and Apache webserver.
rApache is a project supporting web application development using the R statistical language and environmentand the Apache web server.


Sunday, October 5, 2014

Regression Analysis using R

What is a Prediction Problem?
A business problem which involves predicting future events by extracting patterns in the historical data. Prediction problems are solved using Statistical techniques, mathematical models or machine learning techniques.
For example: Forecasting stock price for the next week, predicting which football team wins the world cup, etc.

Thursday, July 31, 2014

Assessing Model Accuracy - Part 2

In my last post, I have explained about MSE, today I will explain the variance & bias trade-off, Precision recall trade-off while assessing the model accuracy.

What is Variance and bias of a statistical learning Method?
Variance refers to the amount by which the estimated output (f) would change if we estimated it (f) using a different training dataset. Since the training data is used to fit the statistical learning method, different training sets will result in different outputs (f).

Saturday, June 21, 2014

Assessing Model Accuracy - Part1

Recently, I have started reading a book "Introduction to statistical Learning", which had good introduction for model accuracy assessing. This post contains excerpts of the chapter:

Often we take different statistical approaches to build a solution for a data analytical problem. Why is it necessary to introduce so many different approaches, rather than a single best method? The answer is: in Statistics no single method dominates all other methods over all possible datasets. One statistical method may work well with a specific dataset and some other method may work better on a similar but different dataset. So it is important to decide for a particular dataset which method produces best results.

Sunday, May 25, 2014

Basic recommendation engine using R

In our day to day life, we come across a large number of Recommendation engines like Facebook Recommendation Engine for Friends’ suggestions, and suggestions of similar Like Pages, Youtube recommendation engine suggesting videos similar to our previous searches/preferences. In today’s blog post I will explain how to build a basic recommender System.

Thursday, April 17, 2014

Time Series Analysis using R - forecast package

In today’s blog post, we shall look into time series analysis using R package – forecast. Objective of the post will be explaining the different methods available in forecast package which can be applied while dealing with time series analysis/forecasting.