In today’s blog post, we shall look into time series analysis using R package – forecast. Objective of the post will be explaining the different methods available in forecast package which can be applied while dealing with time series analysis/forecasting.

####

Table: shows the first row data from Jan 2008 to Dec 2012

The forecasts of the timeseries data will be:

Assuming that the data sources for the analysis are finalized and cleansing of the data is done, for further details,

ts = ts(t(data[,7:66]))

plot(ts[1,],type=’o’,col=’blue’)

Before going into more accurate Forecasting functions for Time series, let us do some basic forecasts using Meanf(), naïve(), random walk with drift – rwf() methods. Though these may not give us proper results but we can use the results as bench marks.

All these forecasting models returns objects which contain original series, point forecasts, forecasting methods used residuals. Below functions shows three methods & their plots.

Library(forecast)

mf = meanf(ts[,1],h=12,level=c(90,95),fan=FALSE,lambda=NULL)

plot(mf)

mn = naive(ts[,1],h=12,level=c(90,95),fan=FALSE,lambda=NULL)

plot(mn)

md = rwf(ts[,1],h=12,drift=T,level=c(90,95),fan=FALSE,lambda=NULL)

plot(md)

> accuracy(md)

ME RMSE MAE MPE MAPE MASE

Training set 1.806244e-16 2.445734 1.889687 -41.68388 79.67588 1.197689

accuracy(mf)

ME RMSE MAE MPE MAPE MASE

Training set 1.55489e-16 1.903214 1.577778 -45.03219 72.00485 1

> accuracy(mn)

ME RMSE MAE MPE MAPE MASE

Training set 0.1355932 2.44949 1.864407 -36.45951 76.98682 1.181666

The stationarity /non-stationarity of the data can be known by applying Unit Root Tests - augmented Dickey–Fuller test (ADF), Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test.

library(tseries)

Based on the unit test results we identify whether the data is stationary or not. If the data is stationary then we choose optimal ARIMA models and forecasts the future intervals. If the data is non- stationary, then we use Differencing - computing the differences between consecutive observations. Use ndiffs(),diff() functions to find the number of times differencing needed for the data & to difference the data respectively.

Now retest for stationarity by applying acf()/kpss() functions if the plots shows us the Stationarity then Go ahead by applying ARIMA Models.

The seasonality in the data can be obtained by the stl()when plotted

For forecasting stationary time series data we need to choose an optimal ARIMA model (p,d,q). For this we can use auto.arima() function which can choose optimal (p,d,q) value and return us. Know more about ARIMA from here.

### What is Time Series?

A time series is a collection of observations of well-defined data items obtained through repeated measurements over time. For example, measuring the value of retail sales each month of the year would comprise a time series.#### Objective:

- Identify patterns in the data – stationarity/non-stationarity.
- Prediction from previous patterns.

### Time series Analysis in R:

My data set contains data of Sales of CARS from Jan-2008 to Dec 2013.####
*Problem Statement:* Forecast sales for 2013

*Problem Statement:*

**MyData[1,1:14]**

PART | Jan08 | FEB08 | MAR08 | .... | .... | NOV12 | DEC12 |

MERC | 100 | 127 | 56 | .... | .... | 776 | 557 |

Table: shows the first row data from Jan 2008 to Dec 2012

**Results:**

Assuming that the data sources for the analysis are finalized and cleansing of the data is done, for further details,

#### Step1: Understand the data:

As a first step, Understand the data visually, for this purpose, the data is converted to time series object using ts(), and plotted visually using plot() functions available in R.ts = ts(t(data[,7:66]))

plot(ts[1,],type=’o’,col=’blue’)

Image above shows the monthly sales of an automobile

#### Forecast package & methods:

Forecast package is written by Rob J Hyndman and is available from CRAN here. The package contains Methods and tools for displaying and analyzing univariate time series forecasts including exponential smoothing via state space models and automatic ARIMA modelling.Before going into more accurate Forecasting functions for Time series, let us do some basic forecasts using Meanf(), naïve(), random walk with drift – rwf() methods. Though these may not give us proper results but we can use the results as bench marks.

All these forecasting models returns objects which contain original series, point forecasts, forecasting methods used residuals. Below functions shows three methods & their plots.

Library(forecast)

mf = meanf(ts[,1],h=12,level=c(90,95),fan=FALSE,lambda=NULL)

plot(mf)

mn = naive(ts[,1],h=12,level=c(90,95),fan=FALSE,lambda=NULL)

plot(mn)

md = rwf(ts[,1],h=12,drift=T,level=c(90,95),fan=FALSE,lambda=NULL)

plot(md)

#### Measuring accuracy:

Once the model has been generated the accuracy of the model can tested using accuracy(). The Accuracy function returns MASE value which can be used to measure the accuracy of the model. The best model is chosen from the below results which gives have relatively lesser values of ME,RMSE,MAE,MPE,MAPE,MASE.> accuracy(md)

ME RMSE MAE MPE MAPE MASE

Training set 1.806244e-16 2.445734 1.889687 -41.68388 79.67588 1.197689

accuracy(mf)

ME RMSE MAE MPE MAPE MASE

Training set 1.55489e-16 1.903214 1.577778 -45.03219 72.00485 1

> accuracy(mn)

ME RMSE MAE MPE MAPE MASE

Training set 0.1355932 2.44949 1.864407 -36.45951 76.98682 1.181666

#### Step2: Time Series Analysis Approach:

A typical time-series analysis involves below steps:- Check for identifying under lying patterns - Stationary & non-stationary, seasonality, trend.
- After the patterns have been identified, if needed apply Transformations to the data – based on Seasonality/trends appeared in the data.
- Apply forecast() the future values using Proper ARIMA model obtained by auto.arima() methods.

#### Identify Stationarity/Non-Stationarity:

**A stationary time series is one whose properties do not depend on the time at which the series is observed. Time series with trends, or with seasonality, are not stationary**.The stationarity /non-stationarity of the data can be known by applying Unit Root Tests - augmented Dickey–Fuller test (ADF), Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test.

**ADF:**The null-hypothesis for an ADF test is that the data are non-stationary. So large p-values are indicative of non-stationarity, and small p-values suggest stationarity. Using the usual 5% threshold, differencing is required if the p-value is greater than 0.05.
adf =
adf.test(ts[,1])

adf

Augmented Dickey-Fuller Test

data: ts[, 1]

Dickey-Fuller =
-4.8228, Lag order = 3, p-value = 0.01

alternative
hypothesis: stationary

The above figure suggests us that the data is of
stationary and we can go ahead with ARIMA models.

**KPSS:**Another popular unit root test is the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. This reverses the hypotheses, so the null-hypothesis is that the data are stationary. In this case, small p-values (e.g., less than 0.05) suggest that differencing is required.
kpss =
kpss.test(ts[,1])

Warning message:

In kpss.test(ts[,
1]) : p-value greater than printed p-value

kpss

KPSS Test for Level Stationarity

data: ts[, 1]

KPSS Level = 0.1399,
Truncation lag parameter = 1, p-value = 0.1

**Differencing:**Based on the unit test results we identify whether the data is stationary or not. If the data is stationary then we choose optimal ARIMA models and forecasts the future intervals. If the data is non- stationary, then we use Differencing - computing the differences between consecutive observations. Use ndiffs(),diff() functions to find the number of times differencing needed for the data & to difference the data respectively.

ndiffs(ts[,1])

[1] 1

`diff_data = diff(ts[,1])`

Time Series:

Start = 2

End = 60

Frequency = 1

[1] 1 5 -3 -1 -1 0
3 1 0 -4 4 -5 0 0 1 1 0
1 0 0 2 -5 3 -2 2 1 -3 0
3 0 2 -1 -5 3 -1

[36] -1 2 -1 -1 5 -2 0 2 -2
-4 0 3 1 -1 0 0 0 -2 2 -3 4
-3 2 5

Now retest for stationarity by applying acf()/kpss() functions if the plots shows us the Stationarity then Go ahead by applying ARIMA Models.

**Identify Seasonality/Trend:**The seasonality in the data can be obtained by the stl()when plotted

Stl = Stl(ts[,1],s.window=”periodic”)

Series is not
period or has less than two periods

Since my data doesn’t contain any seasonal behavior I will not touch the Seasonality part.**ARIMA Models:**For forecasting stationary time series data we need to choose an optimal ARIMA model (p,d,q). For this we can use auto.arima() function which can choose optimal (p,d,q) value and return us. Know more about ARIMA from here.

auto.arima(ts[,2])

Series: ts[, 2]

ARIMA(3,1,1) with
drift

Coefficients:

ar1 ar2
ar3 ma1 drift

-0.2621 -0.1223 -0.2324 -0.7825 0.2806

s.e.
0.2264 0.2234 0.1798 0.2333 0.1316

sigma^2 estimated as
41.64: log likelihood=-190.85

AIC=393.7 AICc=395.31
BIC=406.16**Forecast time series:**

Now we use
forecast() method to forecast the future events.

`forecast(auto.arima(dif_data))`

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

`61 -3.076531531 -5.889584 -0.2634795 -7.378723 1.225660`

`62 0.231773625 -2.924279 3.3878266 -4.594993 5.058540`

`63 0.702386360 -2.453745 3.8585175 -4.124500 5.529272`

`64 -0.419069906 -3.599551 2.7614107 -5.283195 4.445055`

`65 0.025888991 -3.160496 3.2122736 -4.847266 4.899044`

`66 0.098565814 -3.087825 3.2849562 -4.774598 4.971729`

`67 -0.057038778 -3.243900 3.1298229 -4.930923 4.816846`

`68 0.002733053 -3.184237 3.1897028 -4.871317 4.876783`

`69 0.013817766 -3.173152 3.2007878 -4.860232 4.887868`

`70 -0.007757195 -3.194736 3.1792219 -4.881821 4.866307`

`plot(forecast(auto.arima(dif_data)))`

```
```

The below flow chart will give us a summary of the time series ARIMA models approach:

The above flow diagram explains the steps to be
followed for a time series forecasting

```
```

Hello, I have a question about "forecast" package (I am using it in Tableau charts). Is there a way to ignore/exclude current month from the calculations?

ReplyDeleteThanks for a nice tutorial. Are the CARS data you used available for comparison of results with other methods? Is this the same as the standard "cars" dataset used throughout R? Or is it different?

ReplyDeletePlus, it will empower you with data management technologies like machine learning, Flume, and Hadoop. artificial intelligence certification

ReplyDeleteTra vé máy bay giá rẻ tại Aivivu, tham khảo

ReplyDeletevé máy bay đi Mỹ Vietnam Airline

vé máy bay từ seattle về việt nam

khi nào có chuyến bay từ canada về việt nam

Lịch bay từ Hàn Quốc về Việt Nam tháng 7

Don’t forget to always keep your customers in mind when settling on a box style for your lipstick boxes. For instance, if sustainability is a priority for your ideal customer, consider spending a little more to get boxes made from post-consumer waste.

ReplyDeleteYalova

ReplyDeleteHatay

Muş

Bursa

Mersin

11WEK

1530A

ReplyDeleteRize Evden Eve Nakliyat

Kayseri Lojistik

Bartın Evden Eve Nakliyat

Eryaman Boya Ustası

Yenimahalle Parke Ustası

Bayburt Parça Eşya Taşıma

İstanbul Şehir İçi Nakliyat

Düzce Şehir İçi Nakliyat

Giresun Evden Eve Nakliyat

87297

ReplyDeleteDüzce Şehir İçi Nakliyat

Silivri Fayans Ustası

Balıkesir Evden Eve Nakliyat

Eryaman Fayans Ustası

Bitlis Parça Eşya Taşıma

AAX Güvenilir mi

Tunceli Lojistik

Kars Şehir İçi Nakliyat

Artvin Lojistik

614A4

ReplyDeleteOrdu Evden Eve Nakliyat

steroid cycles

Tekirdağ Fayans Ustası

Tokat Evden Eve Nakliyat

Çorum Evden Eve Nakliyat

Artvin Evden Eve Nakliyat

masteron for sale

pharmacy steroids for sale

Kayseri Evden Eve Nakliyat

84AC9

ReplyDeletegümüşhane mobil sohbet et

kayseri sesli sohbet

Antep Goruntulu Sohbet

çankırı bedava sohbet siteleri

giresun görüntülü sohbet kadınlarla

rize kadınlarla sohbet

Bayburt Ücretsiz Görüntülü Sohbet Uygulamaları

Tunceli Chat Sohbet

kırklareli bedava görüntülü sohbet sitesi

73F22

ReplyDeletebitget

gate io

en güvenilir kripto borsası

kraken

mercatox

bitrue

coinex

huobi

mexc

FD353

ReplyDeleteprobit

referans kodu

en güvenilir kripto borsası

binance referans

canlı sohbet ucretsiz

bitrue

binance

bybit

kucoin